19 research outputs found

    Lattice Sphere Detection Techniques In Block Data Transmission And Multiuser Wireless Systems

    Get PDF
    Recent years have witnessed an increase in demand for higher transmission data rates for wireless multimedia communications applications. Block Data Transmission Systems (BDTS) and Code Division Multiple Access (CDMA) are considered as efficient techniques for high data rate transmission and found in the coming generation of mobile and wireless technologies such as Long Term Evolution (LTE) systems. The Exhaustive Search (ES) detector is the optimum. Owing to its high computational load, lattice sphere detection (LSD) technique and its variants had been proposed. For the system designer, the main objective is to achieve an attractive performance-complexity tradeoff. In this research, LSD based detectors are designed for BDTS and Multi-User Detection (MUD) system. LSD searches lattice points in a sphere within a predetermined radius. In LSD, when the initial radius increases, the performance and complexity increased. This research produces exact expression for the sphere radius used in LSD technique which depends on the lattice dimension and average received power. It is well known fact that a small condition number results in a better detection performance. This research aims to reduce the condition number value to its smallest possible using the regularization methods (L1-regularization and L2-regularization), and utilizing special matrices (i.e., Hankel and Toeplitz). Sequentially, this research proposed a new detection technique which called as a near-An-LSD technique. Exact relationships between the LSD performance and condition number, and the relationship between the radius and condition number had been derived

    Sixth Generation (6G)Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions

    Get PDF
    The standardization activities of the fifth generation communications are clearly over and deployment has commenced globally. To sustain the competitive edge of wireless networks, industrial and academia synergy have begun to conceptualize the next generation of wireless communication systems (namely, sixth generation, (6G)) aimed at laying the foundation for the stratification of the communication needs of the 2030s. In support of this vision, this study highlights the most promising lines of research from the recent literature in common directions for the 6G project. Its core contribution involves exploring the critical issues and key potential features of 6G communications, including: (i) vision and key features; (ii) challenges and potential solutions; and (iii) research activities. These controversial research topics were profoundly examined in relation to the motivation of their various sub-domains to achieve a precise, concrete, and concise conclusion. Thus, this article will contribute significantly to opening new horizons for future research direction

    Massive MIMO Detectors Based on Deep Learning, Stair Matrix, and Approximate Matrix Inversion Methods

    No full text
    Massive multiple-input multiple-output (MIMO) is an essential technology in fifth-generation (5G) and beyond 5G (B5G) communication systems. Massive MIMO is employed to meet the increasing request for high capacity in next-generation wireless communication networks. However, signal processing in massive MIMO incurs a high complexity due to a large number of transmitting and receiving antenna elements. In this paper, we propose low complexity massive MIMO data detection techniques based on zero-forcing (ZF) and vertical bell laboratories layered space-time (V-BLAST) method in combination with approximate matrix inversion techniques; Neumann series (NS) and Newton iteration (NI). The proposed techniques reduce the complexity of the ZF V-BLAST method since they avoid the exact matrix inverse computation. Initialization based on a stair matrix is also exploited to balance the performance and the complexity. In addition, we propose a massive MIMO detector based on approximate matrix inversion with a stair matrix initialization and deep learning (DL) based detector; MM Network (MMNet) algorithm. MMNet contains a linear transformation followed by a non-linear denoising stage. As signals propagate through the MMNet, the noise distribution at the input of the denoiser stages approaches a Gaussian distribution, form precisely the conditions in which the denoisers can attenuate noise maximally. We validated the performance of the proposed massive MIMO detection schemes in Gaussian and realistic channel models, i.e., Quadriga channels models. Simulations demonstrate that the proposed detectors achieve a remarkable improvement in the performance with a notable computational complexity reduction when compared to conventional ZF V-BLAST and the MMNET in both simple and real channel scenarios

    Impact of Stair and Diagonal Matrices in Iterative Linear Massive MIMO Uplink Detectors for 5G Wireless Networks

    No full text
    In massive multiple-input multiple-output (M-MIMO) systems, a detector based on maximum likelihood (ML) algorithm attains optimum performance, but it exhaustively searches all possible solutions, hence, it has a very high complexity and realization is denied. Linear detectors are an alternative solution because of low complexity and simplicity in implementation. Unfortunately, they culminate in a matrix inversion that increases the computational complexity in high loaded systems. Therefore, several iterative methods have been proposed to approximate or avoid the matrix inversion, such as the Neuamnn series (NS), Newton iterations (NI), successive overrelaxation (SOR), Gauss–Siedel (GS), Jacobi (JA), and Richardson (RI) methods. However, a detector based on iterative methods requires a pre-processing and initialization where good initialization impresses the convergence, the performance, and the complexity. Most of the existing iterative linear detectors are using a diagonal matrix ( D ) in initialization because the equalization matrix is almost diagonal. This paper studies the impact of utilizing a stair matrix ( S ) instead of D in initializing the linear M-MIMO uplink (UL) detector. A comparison between iterative linear M-MIMO UL detectors with D and S is presented in performance and computational complexity. Numerical Results show that utilization of S achieves the target performance within few iterations, and, hence, the computational complexity is reduced. A detector based on the GS and S achieved a satisfactory bit-error-rate (BER) with the lowest complexity

    A Robust Hybrid Iterative Linear Detector for Massive MIMO Uplink Systems

    No full text
    Fifth-generation (5G) communications system is commercially introduced by several mobile operators where sub-6 GHz bands are the backbone of the 5G networks. A large-scale multiple-input multiple-output (MIMO), or massive MIMO (mMIMO), technology has a major impact to secure high data rate, high spectral efficiency, and quality of service (QoS). It could also have a major role in the beyond-5G systems. A massive number of antennas seek advanced signal processing to detect and equalize the signal. However, optimal detectors, such as the maximum likelihood (ML) and maximum posterior (MAP), are not desirable in implementation due to extremely high complexity. Therefore, sub-optimum solutions have been introduced to obtain and guarantee enough balance between the performance and the computational complexity. In this paper, a robust and joint low complexity detection algorithm is proposed based on the Jacobi (JA) and Gauss–Seidel (GS) methods. In such iterative methods, the performance, complexity, and convergence rate are highly dependent on the initial vector. In this paper, initial solution is proposed by exploiting the benefits of a stair matrix to obtain a fast convergence rate, high performance, and low complexity. Numerical results show that proposed algorithm achieves high accuracy and relieve the computational complexity even when the BS-to-user-antenna ratio (BUAR) is small

    Massive MIMO detection techniques:a survey

    No full text
    Abstract Massive multiple-input multiple-output (MIMO) is a key technology to meet the user demands in performance and quality of services (QoS) for next generation communication systems. Due to a large number of antennas and radio frequency (RF) chains, complexity of the symbol detectors increased rapidly in a massive MIMO uplink receiver. Thus, the research to find the perfect massive MIMO detection algorithm with optimal performance and low complexity has gained a lot of attention during the past decade. A plethora of massive MIMO detection algorithms has been proposed in the literature. The aim of this paper is to provide insights on such algorithms to a generalist of wireless communications. We garner the massive MIMO detection algorithms and classify them so that a reader can find a distinction between different algorithms from a wider range of solutions. We present optimal and near-optimal detection principles specifically designed for the massive MIMO system such as detectors based on a local search, belief propagation and box detection. In addition, we cover detectors based on approximate inversion, which has gained popularity among the VLSI signal processing community due to their deterministic dataflow and low complexity. We also briefly explore several nonlinear small-scale MIMO (2—4 antenna receivers) detectors and their applicability in the massive MIMO context. In addition, we present recent advances of detection algorithms which are mostly based on machine learning or sparsity based algorithms. In each section, we also mention the related implementations of the detectors. A discussion of the pros and cons of each detector is provided

    Deep learning for massive MIMO uplink detectors

    No full text
    Abstract Detection techniques for massive multiple-input multiple-output (MIMO) have gained a lot of attention in both academia and industry. Detection techniques have a significant impact on the massive MIMO receivers’ performance and complexity. Although a plethora of research is conducted using the classical detection theory and techniques, the performance is deteriorated when the ratio between the numbers of antennas and users is relatively small. In addition, most of classical detection techniques are suffering from severe performance loss and/or high computational complexity in real channel scenarios. Therefore, there is a significant room for fundamental research contributions in data detection based on the deep learning (DL) approach. DL architectures can be exploited to provide optimal performance with similar complexity of conventional detection techniques. This paper aims to provide insights on DL based detectors to a generalist of wireless communications. We garner the DL based massive MIMO detectors and classify them so that a reader can find the differences between various architectures with a wider range of potential solutions and variations. In this paper, we discuss the performance-complexity profile, pros and cons, and implementation stiffness of each DL based detector’s architecture. Detection in cell-free massive MIMO is also presented. Challenges and our perspectives for future research directions are also discussed. This article is not meant to be a survey of a mature-subject, but rather serve as a catalyst to encourage more DL research in massive MIMO
    corecore